Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Transplant Direct ; 8(11): e1387, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2087946

ABSTRACT

Studies have shown that coronavirus disease 2019 (COVID-19) vaccination is associated with a lower humoral response in vulnerable kidney patients. Here, we investigated the T-cell response following COVID-19 vaccination in kidney patients compared with controls. Methods: Patients with chronic kidney disease (CKD) stage G4/5 [estimated glomerular filtration rate <30 mL/min/1.73 m2], on dialysis, or living with a kidney transplant and controls received 2 doses of the mRNA-1273 COVID-19 vaccine. Peripheral blood mononuclear cells were isolated at baseline and 28 d after the second vaccination. In 398 participants (50% of entire cohort; controls n = 95, CKD G4/5 n = 81, dialysis n = 78, kidney transplant recipients [KTRs] n = 144)' SARS-CoV-2-specific T cells were measured using an IFN-γ enzyme-linked immune absorbent spot assay. Results: A significantly lower SARS-CoV-2-specific T-cell response was observed after vaccination of patients on dialysis (54.5%) and KTRs (42.6%) in contrast to CDK G4/5 (70%) compared with controls (76%). The use of calcineurin inhibitors was associated with a low T-cell response in KTRs. In a subset of 20 KTRs, we observed waning of the cellular response 6 mo after the second vaccination, which was boosted to some extent after a third vaccination, although T-cell levels remained low. Conclusion: Our data suggest that vaccination is less effective in these patient groups, with humoral nonresponders also failing to mount an adequate cellular response, even after the third vaccination. Given the important role of T cells in protection against disease and cross-reactivity to SARS-CoV-2 variants, alternative vaccination strategies are urgently needed in these high-risk patient groups.

2.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association ; 37(Suppl 3), 2022.
Article in English | EuropePMC | ID: covidwho-1999463

ABSTRACT

BACKGROUND AND AIMS Kidney transplant recipients (KTRs) have a compromised immune response after vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Iron deficiency (ID) impairs B cell proliferation and function, may reduce vaccine efficacy and is highly prevalent among KTRs. We aimed to investigate whether ID correction by ferric carboxymaltose (FCM) treatment improves humoral and cellular responses after SARS-CoV-2 vaccination in iron-deficient KTRs. METHOD In this analysis of an ongoing randomised, double-blind, placebo-controlled clinical trial, iron-deficient KTRs [serum ferritin < 100 μg/L or serum ferritin 100–300 μg/L in combination with transferrin saturation (TSAT) <20%] received up to four doses of 500 mg intravenous FCM or placebo at 6-week intervals (Fig. 1). In the primary intention-to-treat analysis, we determined the effect of ID correction on anti-SARS-CoV-2 IgG titers (ELISA) and T-lymphocyte reactivity against SARS-CoV-2 (ELISPOT) following SARS-CoV-2 vaccination with mRNA-1273 (N = 41) or mRNA-BNT162b2 (N = 5). RESULTS Out of the 46 trial participants (median age 53 (interquartile range 43–65) years, 61% male),  25 were assigned to receive FCM and 21 to receive placebo. FCM treatment efficiently restored iron status:  serum ferritin levels increased from 49 (26–79) μg/L at baseline to 464 (272–621) μg/L at 4 weeks after the second vaccination (P < .001 versus baseline; P < .001 versus placebo group) and TSAT from 21% ± 8% to 34% ± 12% (P < .001 versus baseline; P <.001 versus placebo group), while ID persisted in the placebo group. At 4 weeks after the second vaccination,  anti-SARS-CoV-2 IgG titers tended to be lower in the FCM arm [66.51 (12.02–517.59) BAU/mL; placebo arm:  115.97 (68.86–974.67) BAU/mL,  P = .07,  Fig. 2A]. SARS-CoV-2 specific T-lymphocyte activation did not differ between the study arms [FCM arm:  93.3 (0.85–342.5) IFN-ɣ spots per 106 PBMCs,  placebo arm:  138.3 (0.0–391.7) IFN-ɣ spots per 106 PBMCs,  P = .83,  Fig. 2B]. Anti-SARS-CoV-2 IgG titers and T-lymphocyte reactivity against SARS-CoV-2 significantly correlated with each other (Spearman's rho 0.44,  P = .002), but not with ferritin levels at 4 weeks after the second vaccination (ferritin versus anti-SARS-CoV-2 IgG titer, Spearman's rho –0.15,  P = .33;ferritin versus T-lymphocyte reactivity against SARS-CoV-2, Spearman's rho –0.01,  P = .98). Results were similar in a per-protocol analysis and in sensitivity analyses after the exclusion of individuals with low total IgG levels or mild ID at baseline or patients who received alemtuzumab, anti-thymocyte globulin or high-dose methylprednisolone during the previous 2 years. Separate analyses in subgroups according to immunosuppressive regimen (dual or triple therapy) or vaccine type also yielded highly similar results.  CONCLUSION FCM treatment efficiently restored iron status in KTRs but did not improve the humoral or cellular immune response against SARS-CoV-2 after two vaccinations. (Funded by Dutch Kidney Foundation,  Vifor Fresenius Medical Care Renal Pharma and the Tekke Huizenga Foundation (grant no STHF 2021.01.02);COVAC-EFFECT/EFFECT-KTx ClinicalTrials.gov number,  NCT03769441.)FIGURE 1: Study design.FIGURE 2: Anti-SARS-CoV-2 vaccination response. (A) Anti-SARS-CoV-2 antibody titers before vaccination and four weeks after the first and second vaccination in iron-deficient KTRs who had been treated with FCM or placebo. The dashed horizontal line represents the threshold for IgG seropositivity. (B) SARS-CoV-specific T-lymphocyte response at 4 weeks after the second vaccination in iron-deficient KTRs treated with FCM or placebo. The dashed horizontal line represents the threshold for a positive T-lymphocyte response.

3.
RMD Open ; 8(1)2022 04.
Article in English | MEDLINE | ID: covidwho-1788979

ABSTRACT

OBJECTIVES: To evaluate humoral and cellular immune responses and adverse events (AEs) after COVID-19 vaccination in patients with primary Sjögren's syndrome (pSS) compared to healthy controls (HC), and disease activity following vaccination in patients with pSS. METHODS: 67 patients with pSS and 33 HC (ratio 2:1) received COVID-19 vaccinations following the Dutch vaccination programme. Patients with pSS did not use immunomodulatory drugs, except hydroxychloroquine. Anti-spike 1 receptor binding domain IgG serum antibody levels were measured 28 days after complete vaccination. AEs were collected 7 days after vaccination. In a subgroup, salivary anti-SARS-CoV-2 antibodies and T-cell response by interferon-γ enzyme-linked immune absorbent spot was measured. RESULTS: 47 patients with pSS (70%) and 14 HC (42%) received BNT162b2 (Pfizer-BioNtech), 13 (19%) and 5 (15%) received ChAdOx1 nCoV-19 (AstraZeneca), 6 (9%) and 8 (24%) received mRNA-1273 (Moderna), and 1 (1%) and 6 (18%) received Ad.26.COV2.S (Janssen). All participants had positive anti-SARS-CoV-2 antibody levels (>2500 AU/mL) postvaccination. No differences in anti-SARS-CoV-2 antibody levels were observed between patients with pSS and HC, for each vaccine type. Salivary anti-SARS-CoV-2 IgG antibodies also increased, and a T-cell response was observed in patients with pSS and HC. Frequencies of systemic AEs were comparable between patients with pSS and HC (first vaccination: 34/67 (51%) vs 16/33 (48%), p=0.83; second: 41/66 (62%) vs 14/25 (56%), p=0.59). No significant worsening was observed in patient-reported and systemic disease activity, including auto-antibodies. CONCLUSIONS: Patients with pSS had similar humoral and cellular immune responses as HC, suggesting COVID-19 vaccination is effective in patients with pSS. AEs were also comparable, and no increase in disease activity was seen in patients with pSS.


Subject(s)
COVID-19 , Sjogren's Syndrome , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , SARS-CoV-2 , Sjogren's Syndrome/complications , Vaccination/adverse effects
4.
J Heart Lung Transplant ; 41(6): 765-772, 2022 06.
Article in English | MEDLINE | ID: covidwho-1739750

ABSTRACT

BACKGROUND: Serological responses to COVID-19 vaccination are diminished in recipients of solid organ transplants, especially in lung transplant recipients (LTR), probably as result of immunosuppressive treatment. There is currently no marker of immunosuppression that can be used to predict the COVID-19 vaccination response. Here, we study whether torque tenovirus (TTV), a highly prevalent virus can be used as an indicator of immunosuppression. METHODS: The humoral response to the mRNA 1273 vaccine was assessed in 103 LTR, who received a transplant between 4 and 237 months prior to vaccination, by measuring Spike (S)-specific IgG levels at baseline, 28 days after first, and 28 days after the second vaccination. TTV loads were determined by RT-PCR and Pearson's correlation coefficient was calculated to correlate serological responses to TTV load. RESULTS: Humoral responses to COVID-19 vaccination were observed in 41 of 103 (40%) LTR at 28 days after the second vaccination. Sixty-two of 103 (60%) were non-responders. Lower TTV loads at baseline (significantly) correlated with higher S-specific antibodies and a higher percentage of responders. Lower TTV loads also strongly correlated with longer time since transplantation, indicating that participants with lower TTV loads were longer after transplantation. CONCLUSIONS: This study shows a better humoral response to the SARS-CoV-2 vaccine in subjects with a lower TTV load pre-vaccination. In addition, TTV load correlates with the time after transplantation. Further studies on the use of TTV load in vaccination efficacy studies in immunocompromised cohorts should provide leads for the potential use of this marker for optimizing vaccination response.


Subject(s)
COVID-19 , Torque teno virus , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Lung , SARS-CoV-2 , Torque , Torque teno virus/genetics , Transplant Recipients , Vaccination
6.
Lancet Oncol ; 22(12): 1681-1691, 2021 12.
Article in English | MEDLINE | ID: covidwho-1586209

ABSTRACT

BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.


Subject(s)
2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Antineoplastic Agents/immunology , Immunotherapy , Neoplasms/therapy , Vaccination/adverse effects , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Aged , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , COVID-19/prevention & control , Cohort Studies , Combined Modality Therapy , Female , Humans , Immunogenicity, Vaccine , Immunomodulation , Injections, Intramuscular , Interferon-gamma/metabolism , Male , Middle Aged , Neoplasms/immunology , Netherlands , Prospective Studies , SARS-CoV-2/immunology , Surveys and Questionnaires
7.
Transplantation ; 106(4): 821-834, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1511132

ABSTRACT

BACKGROUND: In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking. METHODS: This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion. RESULTS: Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287-4524] and 1650 [698-3024] versus 3186 [1896-4911] BAU/mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted. CONCLUSIONS: The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.


Subject(s)
COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Kidney Transplantation/adverse effects , Prospective Studies , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL